How PaLM 2 was built and evaluated
Building PaLM 2
PaLM 2 excels at tasks like advanced reasoning, translation, and code generation because of how it was built. It improves upon its predecessor, PaLM, by unifying three distinct research advancements in large language models:
- Use of compute-optimal scaling: The basic idea of compute-optimal scaling is to scale the model size and the training dataset size in proportion to each other. This new technique makes PaLM 2 smaller than PaLM, but more efficient with overall better performance, including faster inference, fewer parameters to serve, and a lower serving cost.
- Improved dataset mixture: Previous LLMs, like PaLM, used pre-training datasets that were mostly English-only text. PaLM 2 improves on its corpus with a more multilingual and diverse pre-training mixture, which includes hundreds of human and programming languages, mathematical equations, scientific papers, and web pages.
- Updated model architecture and objective: PaLM 2 has an improved architecture. PaLM 2 and its latest version were trained on a variety of different tasks, all of which helps PaLM 2 learn different aspects of language.