Jump to Content
Denny Zhou

Denny Zhou

Founded and lead the Reasoning team in Google Brain. Revolutionize machine learning via introducing reasoning to solve long-standing challenges: learning from only a few examples or even instructions only, interpretability, and out-of-distribution/domain generalization. Our solution is teaching language models to reason. For more information, please check my personal homepage.
Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract Chain-of-thought prompting combined with pre-trained large language models has achieved encouraging results on complex reasoning tasks. In this paper, we propose a new decoding strategy, self-consistency, to replace the naive greedy decoding used in chain-of-thought prompting. It first samples a diverse set of reasoning paths instead of only taking the greedy one, and then selects the most consistent answer by marginalizing out the sampled reasoning paths. Self-consistency leverages the intuition that a complex reasoning problem typically admits multiple different ways of thinking leading to its unique correct answer. Our extensive empirical evaluation shows that self-consistency boosts the performance of chain-of-thought prompting with a striking margin on a range of popular arithmetic and commonsense reasoning benchmarks, including GSM8K (+17.9%), SVAMP (+11.0%), AQuA (+12.2%), StrategyQA (+6.4%) and ARC-challenge (+3.9%). View details
    Preview abstract Careful prompt design is critical to the use of large language models in zero-shot or few-shot learning. As a consequence, there is a growing interest in automated methods to design optimal prompts. In this work, we propose Test-time Prompt Editing using Reinforcement learning (TEMPERA). In contrast to prior prompt generation methods, TEMPERA can efficiently leverage prior knowledge, is adaptive to different queries and provides an interpretable prompt for every query. To achieve this, we design a novel action space that allows flexible editing of the initial prompts covering a wide set of commonly-used components like instructions, few-shot exemplars, and verbalizers. The proposed method achieves significant gains compared with recent SoTA approaches like prompt tuning, AutoPrompt, and RLPrompt, across a variety of tasks including sentiment analysis, topic classification, natural language inference, and reading comprehension. Our method achieves 5.33x on average improvement in sample efficiency when compared to the traditional fine-tuning methods. View details
    Preview abstract Existing pre-trained models are generally geared towards a particular class of problems. To date, there seems to be still no consensus on what the right architecture and pre-training setup should be. This paper presents a unified framework for pre-training models that are universally effective across datasets and setups. We begin by disentangling architectural archetypes with pre-training objectives – two concepts that are commonly conflated. Next, we present a generalized and unified perspective for self-supervision in NLP and show how different pre-training objectives can be cast as one another and how interpolating between different objectives can be effective. We then propose Mixture-of-Denoisers (MoD), a pretraining objective that combines diverse pre-training paradigms together. We furthermore introduce a notion of mode switching, wherein downstream fine-tuning is associated with specific pre-training schemes. We conduct extensive ablative experiments to compare multiple pre-training objectives and find that our method pushes the Pareto-frontier by outperforming T5 and/or GPT-like models across multiple diverse setups. Finally, by scaling our model up to 20B parameters, we achieve SOTA performance on 50 well-established supervised NLP tasks ranging from language generation (with automated and human evaluation), language understanding, text classification, question answering, commonsense reasoning, long text reasoning, structured knowledge grounding and information retrieval. Our model also achieve strong results at in-context learning, outperforming 175B GPT-3 on zero-shot SuperGLUE and tripling the performance of T5-XXL on oneshot summarization. Finally, we show that UL2 20B works well with chain-ofthought prompting and reasoning tasks, making it an appealing choice for research into reasoning at a small to medium scale of 20B parameters. We publicly release Flax-based T5X model checkpoints for the 20B model. View details
    Recitation-Augmented Language Models
    Zhiqing Sun
    Yi Tay
    Yiming Yang
    ICLR 2023 (to appear)
    Preview abstract We propose a new paradigm to help Large Language Models (LLMs) generate more accurate factual knowledge without retrieving from an external corpus, called RECITation-augmented gEneration (RECITE). Different from retrieval-augmented language models that retrieve relevant documents before generating the outputs, given an input, RECITE first recites one or several relevant passages from LLMs' own memory via sampling, and then produces the final answers. We show that RECITE is a powerful paradigm for knowledge-intensive NLP tasks. Specifically, we show that by utilizing recitation as the intermediate step, a recite-and-answer scheme can achieve new state-of-the-art performance in various closed-book question answering (CBQA) tasks. In experiments, we verify the effectiveness of RECITE on three pre-trained models (PaLM, UL2, and OPT) and three CBQA tasks (Natural Questions, TriviaQA, and HotpotQA). View details
    The Flan Collection: Designing Data and Methods for Effective Instruction Tuning
    Shayne Longpre
    Le Hou
    Albert Webson
    Hyung Won Chung
    Yi Tay
    Barret Zoph
    Jason Wei
    Proceedings of the 40th International Conference on Machine Learning, PMLR (2023), pp. 22631-22648
    Preview abstract We study the design decisions of publicly available instruction tuning methods, and break down the development of Flan 2022 (Chung et al., 2022). Through careful ablation studies on the Flan Collection of tasks and methods, we tease apart the effect of design decisions which enable Flan-T5 to outperform prior work by 3-17%+ across evaluation settings. We find task balancing and enrichment techniques are overlooked but critical to effective instruction tuning, and in particular, training with mixed prompt settings (zero-shot, few-shot, and chain-of-thought) actually yields stronger (2%+) performance in all settings. In further experiments, we show Flan-T5 requires less finetuning to converge higher and faster than T5 on single downstream tasks, motivating instruction-tuned models as more computationally-efficient starting checkpoints for new tasks. Finally, to accelerate research on instruction tuning, we make the Flan 2022 collection of datasets, templates, and methods publicly available at https://github.com/google-research/FLAN/tree/main/flan/v2. View details
    Emergent abilities of large language models
    Barret Zoph
    Colin Raffel
    Dani Yogatama
    Jason Wei
    Liam B. Fedus
    Maarten Paul Bosma
    Percy Liang
    Sebastian Borgeaud
    Tatsunori B. Hashimoto
    Yi Tay
    TMLR (2022)
    Preview abstract Scaling up language models has been shown to predictably confer a range of benefits such as improved performance and sample efficiency. This paper discusses an unpredictable phenomenon that we call emergent abilities of large language models. Such emergent abilities have close to random performance until evaluated on a model of sufficiently large scale, and hence their emergence cannot be predicted by extrapolating a scaling law based on small-scale models. The emergence of such abilities suggests that additional scaling could further expand the range of tasks that language models can perform. We discuss the implications of these phenomena and suggest directions for future research. View details
    Preview abstract Successful and effective communication between humans and AI relies on a shared experience of the world. By training solely on written text, current language models (LMs) miss the grounded experience of humans in the real-world—their failure to relate language to the physical world causes knowledge to be misrepresented and obvious mistakes in their reasoning. We present Mind's Eye, a paradigm to ground language model reasoning in the physical world. Given a physical reasoning question, we use a computational physics engine (DeepMind’s MuJoCo) to simulate the possible outcomes, and then use the simulation results as part of the input, which enables language models to perform reasoning. Experiments on 39 tasks in a physics alignment benchmark demonstrate that Mind's Eye can improve reasoning ability by a large margin (27.9% zero-shot, and 46.0% few-shot absolute accuracy improvement on average). Smaller language models armed with Mind's Eye can obtain similar performance to models that are 100× larger. Finally, we confirm the robustness of Mind's Eye through ablation studies. View details
    PaLM: Scaling Language Modeling with Pathways
    Aakanksha Chowdhery
    Sharan Narang
    Jacob Devlin
    Maarten Bosma
    Hyung Won Chung
    Sebastian Gehrmann
    Parker Schuh
    Sasha Tsvyashchenko
    Abhishek Rao
    Yi Tay
    Noam Shazeer
    Nan Du
    Reiner Pope
    James Bradbury
    Guy Gur-Ari
    Toju Duke
    Henryk Michalewski
    Xavier Garcia
    Liam Fedus
    David Luan
    Barret Zoph
    Ryan Sepassi
    David Dohan
    Shivani Agrawal
    Mark Omernick
    Marie Pellat
    Aitor Lewkowycz
    Erica Moreira
    Rewon Child
    Oleksandr Polozov
    Zongwei Zhou
    Michele Catasta
    Jason Wei
    arxiv:2204.02311 (2022)
    Preview abstract Large language models have been shown to achieve remarkable performance across a variety of natural language tasks using few-shot learning, which drastically reduces the number of task-specific training examples needed to adapt the model to a particular application. To further our understanding of the impact of scale on few-shot learning, we trained a 540-billion parameter, densely activated, Transformer language model, which we call Pathways Language Model PaLM. We trained PaLM on 6144 TPU v4 chips using Pathways, a new ML system which enables highly efficient training across multiple TPU Pods. We demonstrate continued benefits of scaling by achieving state-of-the-art few-shot learning results on hundreds of language understanding and generation benchmarks. On a number of these tasks, PaLM 540B achieves breakthrough performance, outperforming the finetuned state-of-the-art on a suite of multi-step reasoning tasks, and outperforming average human performance on the recently released BIG-bench benchmark. A significant number of BIG-bench tasks showed discontinuous improvements from model scale, meaning that performance steeply increased as we scaled to our largest model. PaLM also has strong capabilities in multilingual tasks and source code generation, which we demonstrate on a wide array of benchmarks. We additionally provide a comprehensive analysis on bias and toxicity, and study the extent of training data memorization with respect to model scale. Finally, we discuss the ethical considerations related to large language models and discuss potential mitigation strategies. View details
    Preview abstract Answering complex natural language questions on knowledge graphs (KGQA) is a challenging task. It requires reasoning with the input natural language questions as well as a massive, incomplete heterogeneous KG. Prior methods obtain an abstract structured query graph/tree from the input question and traverse the KG for answers following the query tree. However, they inherently cannot deal with missing links in the KG. Here we present LEGO, a Latent Execution-Guided reasOning framework to handle this challenge in KGQA. LEGO works in an iterative way, which alternates between (1) a Query Synthesizer, which synthesizes a reasoning action and grows the query tree step-by-step, and (2) a Latent Space Executor that executes the reasoning action in the latent embedding space to combat against the missing information in KG. To learn the synthesizer without step-wise supervision, we design a generic latent execution guided bottom-up search procedure to find good execution traces efficiently in the vast query space. Experimental results on several KGQA benchmarks demonstrate the effectiveness of our framework compared with previous state of the art. View details
    Preview abstract Spreadsheet formula prediction has been an important program synthesis problem with many real-world applications. Previous works typically utilize input-output examples as the specification for spreadsheet formula synthesis, where each input-output pair simulates a separate row in the spreadsheet. However, this formulation does not fully capture the rich context in real-world spreadsheets. First, spreadsheet data entries are organized as tables, thus rows and columns are not necessarily independent from each other. In addition, many spreadsheet tables include headers, which provide high-level descriptions of the cell data. However, previous synthesis approaches do not consider headers as part of the specification. In this work, we present the first approach for synthesizing spreadsheet formulas from tabular context, which includes both headers and semi-structured tabular data. In particular, we propose SpreadsheetCoder, a BERT-based model architecture to represent the tabular context in both row-based and column-based formats. We train our model on a large dataset of spreadsheets, and demonstrate that SpreadsheetCoder achieves top-1 prediction accuracy of 42:51%, which is a considerable improvement over baselines that do not employ rich tabular context. Compared to a rule-based system, SpreadsheetCoder assists 82% more users in composing formulas on Google Sheets. View details
    Preview abstract Off-policy estimation for long-horizon problems is important in many real-life applications such as healthcare and robotics, where high-fidelity simulators may not be available and on-policy evaluation is expensive or impossible. Recently, \citet{liu18breaking} proposed an approach that avoids the \emph{curse of horizon} suffered by typical importance-sampling-based methods, but are limited in practice as it requires that data be collected by a \emph{single} and \emph{known} behavior policy. In this work, we propose a novel approach that eliminates such limitations. In particular, we formulate the problem as one of solving for the fixed point of a ``backward flow'' operator, the solution of which gives the desired importance ratios of stationary distributions between the target and behavior policies. Experiments on benchmarks verify the effectiveness of the approach. View details
    MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices
    Zhiqing Sun
    Xiaodan Song
    Renjie Liu
    Yiming Yang
    ACL (2020) (to appear)
    Preview abstract Natural Language Processing (NLP) has recently achieved great success by using huge pre-trained models with hundreds of millions of parameters. However, these models suffer from heavy model sizes and high latency such that they cannot be deployed to resource-limited mobile devices. In this paper, we propose MobileBERT for compressing and accelerating the popular BERT model. Like the original BERT, MobileBERT is task-agnostic, that is, it can be generically applied to various downstream NLP tasks via simple fine-tuning. Basically, MobileBERT is a thin version of $\text{BERT}_\text{LARGE}$, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks. To train MobileBERT, we %investigate a variety of knowledge transfer strategies to transfer the intrinsic knowledge from a teacher model, first train a specially designed teacher model, an inverted-bottleneck incorporated $\text{BERT}_\text{LARGE}$ model. Then, we conduct knowledge transfer from this teacher to MobileBERT. Empirical studies show that MobileBERT is 4.3$\times$ smaller and 5.5$\times$ faster than $\text{BERT}_\text{BASE}$ while achieving competitive results on well-known benchmarks. On the natural language inference tasks of GLUE, $\text{MobileBERT}$ achieves a GLUE score of $77.7$ ($0.6$ lower than $\text{BERT}_\text{BASE}$), and 62 ms latency on a Pixel 4 phone. On the SQuAD v1.1/v2.0 question answering task, $\text{MobileBERT}$ achieves a dev F1 score of $90.0/79.2$ ($1.5/2.1$ higher than $\text{BERT}_\text{BASE}$). View details
    Preview abstract Capturing the inter-dependencies among multiple types of clinically-critical events is critical not only to accurate future event prediction, but also to better treatment planning. In this work, we propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events (e.g., kidney failure, mortality) by explicitly modeling the temporal dynamics of patients' latent states. Based on these learned patient states, we further develop a new general discrete-time formulation of the hazard rate function to estimate the survival distribution of patients with significantly improved accuracy. Extensive evaluations over real EMR data show that our proposed model compares favorably to various state-of-the-art baselines. Furthermore, our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures. View details
    Neural Logic Machines
    Honghua Dong
    Jiayuan Mao
    Tian Lin
    Chong Wang
    Lihong Li
    ICLR (2019)
    Preview abstract We propose the Neural Logic Machine (NLM), a neural-symbolic architecture for both inductive learning and logic reasoning. NLMs exploit the power of both neural networks—as function approximators, and logic programming—as a symbolic processor for objects with properties, relations, logic connectives, and quantifiers. After being trained on small-scale tasks (such as sorting short arrays), NLMs can recover lifted rules, and generalize to large-scale tasks (such as sorting longer arrays). In our experiments, NLMs achieve perfect generalization in a number of tasks, from relational reasoning tasks on the family tree and general graphs, to decision making tasks including sorting arrays, finding shortest paths, and playing the blocks world. Most of these tasks are hard to accomplish for neural networks or inductive logic programming alone. View details
    Towards Neural Phrase-based Machine Translation
    Po-Sen Huang
    Chong Wang
    Sitao Huang
    Li Deng
    ICLR (2018)
    Preview abstract In this paper, we present Neural Phrase-based Machine Translation (NPMT). Our method explicitly models the phrase structures in output sequences using SleepWAke Networks (SWAN), a recently proposed segmentation-based sequence modeling method. To mitigate the monotonic alignment requirement of SWAN, we introduce a new layer to perform (soft) local reordering of input sequences. Different from existing neural machine translation (NMT) approaches, NPMT does not use attention-based decoding mechanisms. Instead, it directly outputs phrases in a sequential order. Our experiments show that NPMT achieves superior performances on IWSLT 2014 German-English/English-German and IWSLT 2015 English-Vietnamese machine translation tasks compared with strong NMT baselines. We also observe that our method produces meaningful phrases in output languages. View details
    Breaking the curse of horizon: Infinite-horizon off-policy estimation
    Qiang Liu
    Lihong Li
    Ziyang Tang
    NeurIPS (Spotlight) (2018)
    Preview abstract We consider off-policy estimation of the expected reward of a target policy using samples collected by a different behavior policy. Importance sampling (IS) has been a key technique for deriving (nearly) unbiased estimators, but is known to suffer from an excessively high variance in long-horizon problems. In the extreme case of infinite-horizon problems, the variance of an IS-based estimator may even be unbounded. In this paper, we propose a new off-policy estimator that applies IS directly on the stationary state-visitation distributions to avoid the exploding variance faced by existing methods. Our key contribution is a novel approach to estimating the density ratio of two stationary state distributions, with trajectories sampled from only the behavior distribution. We develop a mini-max loss function for the estimation problem, and derive a closed-form solution for the case of RKHS. We support our method with both theoretical and empirical analyses. View details
    On the Discrimination-Generalization Tradeoff in GANs
    Pengchuan Zhang
    Qiang Liu
    Tao Xu
    Xiaodong He
    ICLR (2018)
    Preview abstract Generative adversarial training can be generally understood as minimizing certain moment matching loss defined by a set of discriminator functions, typically neural networks. The discriminator set should be large enough to be able to uniquely identify the true distribution (discriminative), and also be small enough to go beyond memorizing samples (generalizable). In this paper, we show that a discriminator set is guaranteed to be discriminative whenever its linear span is dense in the set of bounded continuous functions. This is a very mild condition satisfied even by neural networks with a single neuron. Further, we develop generalization bounds between the learned distribution and true distribution under different evaluation metrics. When evaluated with neural distance, our bounds show that generalization is guaranteed as long as the discriminator set is small enough, regardless of the size of the generator or hypothesis set. When evaluated with KL divergence, our bound provides an explanation on the counter-intuitive behaviors of testing likelihood in GAN training. Our analysis sheds lights on understanding the practical performance of GANs. View details
    No Results Found