Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping


Instrumenting and collecting annotated visual grasping datasets to train modern machine learning algorithms is prohibitively expensive. An appealing alternative is to use off-the-shelf simulators to render synthetic data for which ground-truth annotations are generated automatically. Unfortunately, models trained purely on simulated data often fail to generalize to the real world. To address this shortcoming, prior work introduced domain adaptation algorithms that attempt to make the resulting models domain-invariant. However, such works were evaluated primarily on offline image classification datasets. In this work, we adapt these techniques for learning, primarily in simulation, robotic hand-eye coordination for grasping. Our approaches generalize to diverse and previously unseen real-world objects. We show that, by using synthetic data and domain adaptation, we are able to reduce the amounts of real--world samples required for our goal and a certain level of performance by up to 50 times. We also show that by using our suggested methodology we are able to achieve good grasping results by using no real world labeled data.