AI

Situational Context for Ranking in Personal Search

Abstract

Modern search engines leverage a variety of sources, beyond the traditional query-document content similarity, to improve their ranking performance. Among them, query context has attracted attention in prior work. Previously, query context was mainly modeled by user search history, either long-term or short-term, to help the ranking of future queries. In this paper, we focus on situational context, i.e., the contextual features of the current search request that are independent from both query content and user history. As an example, situational context can depend on search request time and location. We propose two context-aware ranking models based on neural networks. The first model learns a low-dimensional deep representation from the combination of contextual features. The second model extends the first model by leveraging binarized contextual features in addition to the high-level abstractions learned from a deep network.

The existing context-aware ranking models are mainly based on search history, especially click data that can be gathered from the search engine logs. Although context-aware models have been widely explored in web search, their influence on search scenarios where click data is highly sparse is relatively unstudied. The focus of this paper, personal search (e.g., email search or on-device search) is one of such scenarios. We evaluate our models using the click data collected from one of the world's largest personal search engines. The experiments demonstrate that the proposed models significantly outperform the baselines which do not take context into account. These results indicate the importance of situational context for personal search, and open up a venue for further exploration of situational context in other search scenarios.