Scalable in-situ qubit calibration during repetitive error detection


We present a method to optimize physical qubit parameters while error detection is running. We demonstrate how gate optimization can be parallelized in a large-scale qubit array. Additionally we show that the presented method can be used to simultaneously compensate for independent or correlated qubit parameter drifts. Our method is O(1) scalable to systems of arbitrary size, providing a path towards controlling the large numbers of qubits needed for a fault-tolerant quantum computer.