AI

YouTube-8M: A Large-Scale Video Classification Benchmark

Abstract

Many recent advancements in Computer Vision are attributed to large datasets. Open-source software packages for Machine Learning and inexpensive commodity hardware have reduced the barrier of entry for exploring novel approaches at scale. It is possible to train models over millions of examples within a few days. Although large-scale datasets exist for image understanding, such as ImageNet, there are no comparable size video classification datasets.

In this paper, we introduce YouTube-8M, the largest multi-label video classification dataset, composed of ~8 million videos---500K hours of video---annotated with a vocabulary of 4803 visual entities. To get the videos and their (multiple) labels, we used the YouTube Data APIs. We filtered the video labels (Freebase topics) using both automated and manual curation strategies, including by asking Mechanical Turk workers if the labels are visually recognizable. Then, we decoded each video at one-frame-per-second, and used a Deep CNN pre-trained on ImageNet to extract the hidden representation immediately prior to the classification layer. Finally, we compressed the frame features and make both the features and video-level labels available for download. The dataset contains frame-level features for over 1.9 billion video frames and 8 million videos, making it the largest public multi-label video dataset.

We trained various (modest) classification models on the dataset, evaluated them using popular evaluation metrics, and report them as baselines. Despite the size of the dataset, some of our models train to convergence in less than a day on a single machine using the publicly-available TensorFlow framework. We plan to release code for training a basic TensorFlow model and for computing metrics.

We show that pre-training on large data generalizes to other datasets like Sports-1M and ActivityNet. We achieve state-of-the-art on ActivityNet, improving mAP from 53.8% to 77.8%. We hope that the unprecedented scale and diversity of YouTube-8M will lead to advances in video understanding and representation learning.