AI

Trickle: Rate Limiting YouTube Video Streaming

Abstract

YouTube traffic is bursty. These bursts trigger packet losses and stress router queues, causing TCP’s congestion-control algorithm to kick in. In this paper, we introduce Trickle, a server-side mechanism that uses TCP to rate limit YouTube video streaming. Trickle paces the video stream by placing an upper bound on TCP’s congestion window as a function of the streaming rate and the round-trip time. We evaluated Trickle on YouTube production data centers in Europe and India and analyzed its impact on losses, bandwidth, RTT, and video buffer under-run events. The results show that Trickle reduces the average TCP loss rate by up to 43% and the average RTT by up to 28% while maintaining the streaming rate requested by the application.