AI

Energy Proportional Datacenter Networks

Abstract

Numerous studies have shown that datacenter computers rarely operate at full utilization, leading to a number of proposals for creating servers that are energy proportional with respect to the computation that they are performing. In this paper, we show that as servers themselves become more energy proportional, the datacenter network can become a significant fraction (up to 50%) of cluster power. In this paper we propose several ways to design a high-performance datacenter network whose power consumption is more proportional to the amount of traffic it is moving --- that is, we propose energy proportional datacenter networks. We first show that a flattened butterfly topology itself is inherently more power efficient than the other commonly proposed topology for high-performance datacenter networks. We then exploit the characteristics of modern plesiochronous links to adjust their power and performance envelopes dynamically. Using a network simulator, driven by both synthetic workloads and production datacenter traces, we characterize and understand design tradeoffs, and demonstrate an 85% reduction in power --- which approaches the ideal energy-proportionality of the network.

Our results also demonstrate two challenges for the designers of future network switches: 1) We show that there is a significant power advantage to having independent control of each unidirectional channel comprising a network link, since many traffic patterns show very asymmetric use, and 2) system designers should work to optimize the high-speed channel designs to be more energy efficient by choosing optimal data rate and equalization technology. Given these assumptions, we demonstrate that energy proportional datacenter communication is indeed possible.