Jump to Content
Kevin Wilson

Kevin Wilson

Authored Publications
Google Publications
Other Publications
Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
    Preview abstract This work introduces sequential neural beamforming, which alternates between neural network based spectral separation and beamforming based spatial separation. Our neural networks for separation use an advanced convolutional architecture trained with a novel stabilized signal-to-noise ratio loss function. For beamforming, we explore multiple ways of computing time-varying covariance matrices, including factorizing the spatial covariance into a time-varying amplitude component and a time-invariant spatial component, as well as using block-based techniques. In addition, we introduce a multi-frame beamforming method which improves the results significantly by adding contextual frames to the beamforming formulations. We extensively evaluate and analyze the effects of window size, block size, and multi-frame context size for these methods. Our best method utilizes a sequence of three neural separation and multiframe time-invariant spatial beamforming stages, and demonstrates an average improvement of 2.75 dB in scale-invariant signal-to-noise ratio and 14.2% absolute reduction in a comparative speech recognition metric across four challenging reverberant speech enhancement and separation tasks. We also use our three-speaker separation model to separate real recordings in the LibriCSS evaluation set into non-overlapping tracks, and achieve a better word error rate as compared to a baseline mask based beamformer. View details
    Preview abstract Supervised approaches to single-channel speech separation rely on synthetic mixtures, so that the individual sources can be used as targets. Good performance depends upon how well the synthetic mixture data match real mixtures. However, matching synthetic data to the acoustic properties and distribution of sounds in a target domain can be challenging. Instead, we propose an unsupervised method that requires only singlechannel acoustic mixtures, without ground-truth source signals. In this method, existing mixtures are mixed together to form a mixture of mixtures, which the model separates into latent sources. We propose a novel loss that allows the latent sources to be remixed to approximate the original mixtures. Experiments show that this method can achieve competitive performance on speech separation compared to supervised methods. In a semisupervised learning setting, our method enables domain adaptation by incorporating unsupervised mixtures from a matched domain. In particular, we demonstrate that significant improvement to reverberant speech separation performance can be achieved by incorporating reverberant mixtures. View details
    Preview abstract In recent years, rapid progress has been made on the problem of single-channel sound separation using supervised training of deep neural networks. In such supervised approaches, a model is trained to predict the component sources from synthetic mixtures created by adding up isolated ground-truth sources. Reliance on this synthetic training data is problematic because good performance depends upon the degree of match between the training data and real-world audio, especially in terms of the acoustic conditions and distribution of sources. The acoustic properties can be challenging to accurately simulate, and the distribution of sound types may be hard to replicate. In this paper, we propose a completely unsupervised method, mixture invariant training (MixIT), that requires only single-channel acoustic mixtures. In MixIT, training examples are constructed by mixing together existing mixtures, and the model separates them into a variable number of latent sources, such that the separated sources can be remixed to approximate the original mixtures. We show that MixIT can achieve competitive performance compared to supervised methods on speech separation. Using MixIT in a semi-supervised learning setting enables unsupervised domain adaptation and learning from large amounts of real world data without ground-truth source waveforms. In particular, we significantly improve reverberant speech separation performance by incorporating reverberant mixtures, train a speech enhancement system from noisy mixtures, and improve universal sound separation by incorporating a large amount of in-the-wild data. View details
    Preview abstract We introduce VoiceFilter-Lite, a single-channel source separation model that runs on the device to preserve only the speech signals from a target user, as part of a streaming speech recognition system. Delivering such a model presents numerous challenges: It should improve the performance when the input signal consists of overlapped speech, and must not hurt the speech recognition performance under all other acoustic conditions. Besides, this model must be tiny, fast, and perform inference in a streaming fashion, in order to have minimal impact on CPU, memory, battery and latency. We propose novel techniques to meet these multi-faceted requirements, including using a new asymmetric loss, and adopting adaptive runtime suppression strength. We also show that such a model can be quantized as a 8-bit integer model and run in realtime. View details
    Differentiable Consistency Constraints for Improved Deep Speech Enhancement
    Jeremy Thorpe
    Michael Chinen
    IEEE International Conference on Acoustics, Speech, and Signal Processing (2019)
    Preview abstract In recent years, deep networks have led to dramatic improvements in speech enhancement by framing it as a data-driven pattern recognition problem. In many modern enhancement systems, large amounts of data are used to train a deep network to estimate masks for complex-valued short-time Fourier transforms (STFTs) to suppress noise and preserve speech. However, current masking approaches often neglect two important constraints: STFT consistency and mixture consistency. Without STFT consistency, the system’s output is not necessarily the STFT of a time-domain signal, and without mixture consistency, the sum of the estimated sources does not necessarily equal the input mixture. Furthermore, the only previous approaches that apply mixture consistency use real-valued masks; mixture consistency has been ignored for complex-valued masks. In this paper, we show that STFT consistency and mixture consistency can be jointly imposed by adding simple differentiable projection layers to the enhancement network. These layers are compatible with real or complex-valued masks. Using both of these constraints with complex-valued masks provides a 0.7 dB increase in scale-invariant signal-to-distortion ratio (SI-SDR) on a large dataset of speech corrupted by a wide variety of nonstationary noise across a range of input SNRs. View details
    Universal Sound Separation
    Ilya Kavalerov
    Jonathan Le Roux
    IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) (2019)
    Preview abstract Recent deep learning approaches have achieved impressive performance on speech enhancement and separation tasks. However, these approaches have not been investigated for separating mixtures of arbitrary sounds of different types, a task we refer to as universal sound separation, and it is unknown whether performance on speech tasks carries over to non-speech tasks. To study this question, we develop a universal dataset of mixtures containing arbitrary sounds, and use it to investigate the space of mask-based separation architectures, varying both the overall network architecture and the framewise analysis-synthesis basis for signal transformations. These network architectures include convolutional long short-term memory networks and time-dilated convolution stacks inspired by the recent success of time-domain enhancement networks like ConvTasNet. For the latter architecture, we also propose novel modifications that further improve separation performance. In terms of the framewise analysis-synthesis basis, we explore using either a short-time Fourier transform (STFT) or a learnable basis, as used in ConvTasNet, and for both of these bases, we examine the effect of window size. In particular, for STFTs, we find that longer windows (25-50 ms) work best for speech/non-speech separation, while shorter windows (2.5 ms) work best for arbitrary sounds. For learnable bases, shorter windows (2.5 ms) work best on all tasks. Surprisingly, for universal sound separation, STFTs outperform learnable bases. Our best methods produce an improvement in scale-invariant signal-to-distortion ratio of over 13 dB for speech/non-speech separation and close to 10 dB for universal sound separation. View details
    Preview abstract In this paper, we present a novel system that separates the voice of a target speaker from multi-speaker signals, by making use of a reference signal from the target speaker. We achieve this by training two separate neural networks: (1) A speaker recognition network that produces speaker-discriminative embeddings; (2) A spectrogram masking network that takes both noisy spectrogram and speaker embedding as input, and produces a mask. Our system significantly reduces the speech recognition WER on multi-speaker signals, with minimal WER degradation on single-speaker signals. View details
    Preview abstract We present a model for isolating and enhancing speech of desired speakers in a video. The input is a video with one or more people speaking, where the speech of interest is interfered by other speakers and/or background noise. We leverage both audio and visual features for this task, which are fed into a joint audio-visual source separation model we designed and trained using thousands of hours of video segments with clean speech from our new dataset, AVSpeech-90K. We present results for various real, practical scenarios involving heated debates and interviews, noisy bars and screaming children, only requiring users to specify the face of the person in the video whose speech they would like to isolate. View details
    EXPLORING TRADEOFFS IN MODELS FOR LOW-LATENCY SPEECH ENHANCEMENT
    Jeremy Thorpe
    Michael Chinen
    Proceedings of the 16th International Workshop on Acoustic Signal Enhancement (2018)
    Preview abstract We explore a variety of configurations of neural networks for one- and two-channel spectrogram-mask-based speech enhancement. Our best model improves on state-of-the-art performance on the CHiME2 speech enhancement task. We examine trade-offs among non-causal lookahead, compute work, and parameter count versus enhancement performance and find that zero-lookahead models can achieve, on average, only 0.5 dB worse performance than our best bidirectional model. Further, we find that 200 milliseconds of lookahead is sufficient to achieve performance within about 0.2 dB from our best bidirectional model. View details
    Preview abstract Speech activity detection (or endpointing) is an important processing step for applications such as speech recognition, language identification and speaker diarization. Both audio- and vision-based approaches have been used for this task in various settings and with multiple variations tailored toward applications. Unfortunately, much of the prior work reports results in synthetic settings, on task-specific datasets, or on datasets that are not openly available. This makes it difficult to compare approaches in similar settings and to understand their strengths and weaknesses. In this paper, we describe a new dataset of densely labeled speech activity in YouTube video clips, which has been designed to address these issues and will be released publicly. The dataset labels go beyond speech alone, annotating three specific speech activity situations: clean speech, speech and music co-occurring, and speech and noise co-occurring. These classes will enable further analysis of model performance in the presence of noise. We report benchmark performance numbers on this dataset using state-of-the-art audio and vision models. View details
    Preview abstract We present a joint audio-visual model for isolating a single speech signal from a mixture of sounds such as other speakers and background noise. Solving this task using only audio as input is extremely challenging and does not provide an association of the separated speech signals with speakers in the video. In this paper, we present a deep network-based model that incorporates both visual and auditory signals to solve this task. The visual features are used to "focus" the audio on desired speakers in a scene and to improve the speech separation quality. To train our joint audio-visual model, we introduce AVSpeech, a new dataset comprised of thousands of hours of video segments from the Web. We demonstrate the applicability of our method to classic speech separation tasks, as well as real-world scenarios involving heated interviews, noisy bars, and screaming children, only requiring the user to specify the face of the person in the video whose speech they want to isolate. Our method shows clear advantage over state-of-the-art audio-only speech separation in cases of mixed speech. In addition, our model, which is speaker-independent (trained once, applicable to any speaker), produces better results than recent audio-visual speech separation methods that are speaker-dependent (require training a separate model for each speaker of interest). View details
    Preview abstract Convolutional Neural Networks (CNNs) have proven very effective in image classification and have shown promise for audio classification. We apply various CNN architectures to audio and investigate their ability to classify videos with a very large scale data set of 70M training videos (5.24 million hours) with 30,871 labels. We examine fully connected Deep Neural Networks (DNNs), AlexNet [1], VGG [2], Inception [3], and ResNet [4]. We explore the effects of training with different sized subsets of the 70M training videos. Additionally we report the effect of training over different subsets of the 30,871 labels. While our dataset contains video-level labels, we are also interested in Acoustic Event Detection (AED) and train a classifier on embeddings learned from the video-level task on AudioSet [5]. We find that derivatives of image classification networks do well on our audio classification task, that increasing the number of labels we train on provides some improved performance over subsets of labels, that performance of models improves as we increase training set size, and that a model using embeddings learned from the video-level task do much better than a baseline on the AudioSet classification task. View details
    Preview abstract This paper describes the technical and system building advances made to the Google Home multichannel speech recognition system, which was launched in November 2016. Technical advances include an adaptive dereverberation frontend, the use of neural network models that do multichannel processing jointly with acoustic modeling, and grid lstms to model frequency variations. On the system level, improvements include adapting the model using Google Home specific data. We present results on a variety of multichannel sets. The combination of technical and system advances result in a reduction of WER of over 18\% relative compared to the current production system. View details
    Preview abstract Multichannel ASR systems commonly separate speech enhancement, including localization, beamforming and postfiltering, from acoustic modeling. In this paper, we perform multichannel enhancement jointly with acoustic modeling in a deep neural network framework. Inspired by beamforming, which leverages differences in the fine time structure of the signal at different microphones to filter energy arriving from different directions, we explore modeling the raw time-domain waveform directly. We introduce a neural network architecture which performs multichannel filtering in the first layer of the network and show that this network learns to be robust to varying target speaker direction of arrival, performing as well as a model that is given oracle knowledge of the true target speaker direction. % Next, we show how performance can be improved by \emph{factoring} the first layer to separate the multichannel spatial filtering operation from a single channel filterbank which computes a frequency decomposition. % We also introduce an adaptive variant, which updates the spatial filter coefficients at each time frame based on the previous inputs. % Finally we demonstrate that these approaches can be implemented more efficiently in the frequency domain. Overall, we find that such multichannel neural networks give a relative word error rate improvement of more than 5\% compared to a traditional beamforming-based multichannel ASR system and more than 10\% compared to a single channel waveform model. View details
    Preview abstract Multichannel ASR systems commonly separate speech enhancement, including localization, beamforming and postfiltering, from acoustic modeling. In this chapter, we perform multi-channel enhancement jointly with acoustic modeling in a deep neural network framework. Inspired by beamforming, which leverages differences in the fine time structure of the signal at different microphones to filter energy arriving from different directions, we explore modeling the raw time-domain waveform directly. We introduce a neural network architecture which performs multichannel filtering in the first layer of the network and show that this network learns to be robust to varying target speaker direction of arrival, performing as well as a model that is given oracle knowledge of the true target speaker direction. Next, we show how performance can be improved by factoring the first layer to separate the multichannel spatial filtering operation from a single channel filterbank which computes a frequency decomposition. We also introduce an adaptive variant, which updates the spatial filter coefficients at each time frame based on the previous inputs. Finally we demonstrate that these approaches can be implemented more efficiently in the frequency domain. Overall, we find that such multichannel neural networks give a relative word error rate improvement of more than 5% compared to a traditional beamforming-based multichannel ASR system and more than 10% compared to a single channel waveform model. View details
    Preview abstract Joint multichannel enhancement and acoustic modeling using neural networks has shown promise over the past few years. However, one shortcoming of previous work [1,2,3] is that the filters learned during training are fixed for decoding, potentially limiting the ability of these models to adapt to previously unseen or changing conditions. In this paper we explore a neural network adaptive beamforming (NAB) technique to address this issue. Specifically, we use LSTM layers to predict time domain beamforming filter coefficients at each input frame. These filters are convolved with the framed time domain input signal and summed across channels, essentially performing FIR filter-and-sum beamforming using the dynamically adapted filter. The beamformer output is passed into a waveform CLDNN acoustic model [4] which is trained jointly with the filter prediction LSTM layers. We find that the proposed NAB model achieves a 12.7% relative improvement in WER over a single channel model [4] and reaches similar performance to a ``factored'' model architecture which utilizes several fixed spatial filters [3] on a 2,000-hour Voice Search task, with a 17.9% decrease in computational cost. View details
    AutoMOS: Learning a non-intrusive assessor of naturalness-of-speech
    Yannis Agiomyrgiannakis
    NIPS 2016 End-to-end Learning for Speech and Audio Processing Workshop (to appear)
    Preview abstract Developers of text-to-speech synthesizers (TTS) often make use of human raters to assess the quality of synthesized speech. We demonstrate that we can model human raters' mean opinion scores (MOS) of synthesized speech using a deep recurrent neural network whose inputs consist solely of a raw waveform. Our best models provide utterance-level estimates of MOS only moderately inferior to sampled human ratings, as shown by Pearson and Spearman correlations. When multiple utterances are scored and averaged, a scenario common in synthesizer quality assessment, we achieve correlations comparable to those of human raters. This model has a number of applications, such as the ability to automatically explore the parameter space of a speech synthesizer without requiring a human-in-the-loop. We explore a method of probing what the models have learned. View details
    Speech Acoustic Modeling from Raw Multichannel Waveforms
    Yedid Hoshen
    International Conference on Acoustics, Speech, and Signal Processing, IEEE (2015)
    Preview abstract Standard deep neural network-based acoustic models for automatic speech recognition (ASR) rely on hand-engineered input features, typically log-mel filterbank magnitudes. In this paper, we describe a convolutional neural network - deep neural network (CNN-DNN) acoustic model which takes raw multichannel waveforms as input, i.e. without any preceding feature extraction, and learns a similar feature representation through supervised training. By operating directly in the time domain, the network is able to take advantage of the signal's fine time structure that is discarded when computing filterbank magnitude features. This structure is especially useful when analyzing multichannel inputs, where timing differences between input channels can be used to localize a signal in space. The first convolutional layer of the proposed model naturally learns a filterbank that is selective in both frequency and direction of arrival, i.e. a bank of bandpass beamformers with an auditory-like frequency scale. When trained on data corrupted with noise coming from different spatial locations, the network learns to filter them out by steering nulls in the directions corresponding to the noise sources. Experiments on a simulated multichannel dataset show that the proposed acoustic model outperforms a DNN that uses log-mel filterbank magnitude features under noisy and reverberant conditions. View details
    No Results Found