AI
About
Geoffrey Hinton received his BA in Experimental Psychology from Cambridge in 1970 and his PhD in Artificial Intelligence from Edinburgh in 1978. He did postdoctoral work at Sussex University and the University of California San Diego and spent five years as a faculty member in the Computer Science department at Carnegie-Mellon University. He then became a fellow of the Canadian Institute for Advanced Research and moved to the Department of Computer Science at the University of Toronto. He spent three years from 1998 until 2001 setting up the Gatsby Computational Neuroscience Unit at University College London and then returned to the University of Toronto where he is now an emeritus distinguished professor. From 2004 until 2013 he was the director of the program on "Neural Computation and Adaptive Perception" which is funded by the Canadian Institute for Advanced Research. Since 2013 he has been working half-time for Google in Mountain View and Toronto.

Geoffrey Hinton is a fellow of the Royal Society, the Royal Society of Canada, and the Association for the Advancement of Artificial Intelligence. He is an honorary foreign member of the American Academy of Arts and Sciences and the National Academy of Engineering, and a former president of the Cognitive Science Society. He has received honorary doctorates from the University of Edinburgh, the University of Sussex, and the University of Sherbrooke. He was awarded the first David E. Rumelhart prize (2001), the IJCAI award for research excellence (2005), the Killam prize for Engineering (2012) , The IEEE James Clerk Maxwell Gold medal (2016), and the NSERC Herzberg Gold Medal (2010) which is Canada's top award in Science and Engineering.

Geoffrey Hinton designs machine learning algorithms. His aim is to discover a learning procedure that is efficient at finding complex structure in large, high-dimensional datasets and to show that this is how the brain learns to see. He was one of the researchers who introduced the back-propagation algorithm and the first to use backpropagation for learning word embeddings. His other contributions to neural network research include Boltzmann machines, distributed representations, time-delay neural nets, mixtures of experts, variational learning, products of experts and deep belief nets. His research group in Toronto made major breakthroughs in deep learning that have revolutionized speech recognition and object classification.